算法分析的那个定理.
Master Theorem
\[T(n) = \begin{cases} \Theta(1), & \text{if } n = 1,\\ aT(n/b) + f(n), & \text{if } n>1. \end{cases}\]where $a\ge1$, $b>1$ are constants and $f$ is nonnegative. Then
- If $f(n) = O(n^{\log_b a-\varepsilon})$ for some constant $\varepsilon >0$, then $T(n) = \Theta(n^{\log_b a})$.
- If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a}\log n)$.
- If $f(n) = \Omega(n^{\log_b a+\varepsilon})$ for some constant $\varepsilon >0$, and if $af(n/b)\le cf(n)$ for some constant $c<1$ and all sufficiently large $n$, then $T(n) = \Theta(f(n))$.