Solutions to Selected Problems in Time Series Analysis

JaR

June 4, 2020

This document contains solutions to selected problems in
Brockwell, P. J., Davis, R. A., and Fienberg, S. E. (1991). Time series: theory and methods. Springer Science \& Business Media.

Readers are encouraged to provide suggestions to improve the solutions and to report any mistake or typo that may be found.

HW9 Problem 1 (4.12) It suffices to minimize $\left|1-1.317 \mathrm{e}^{-\mathrm{i} \lambda}+0.634 \mathrm{e}^{-2 \mathrm{i} \lambda}\right|^{2}$. See Figure 1. Many mistakely took 0 as the answer. The corresponding period should be $2 \pi / \lambda$ (which is not important actually).

HW9 Problem 4 (5.3) Hanxiang Shen gave a simple answer. Let

$$
\gamma(h)= \begin{cases}1, & h=0 \\ 1 / 2, & h \neq 0\end{cases}
$$

Then it is straightforward to verify that γ is an even and positive definite function.

HW9 Problem 5 (5.5) Using the equations provided in Example 5.2.1 (p. 173), we have

$$
\begin{aligned}
& v_{0}=\left(1+\theta^{2}\right) \sigma^{2} \\
& v_{n}=\left(1+\theta^{2}-v_{n-1}^{-1} \theta^{2} \sigma^{2}\right) \sigma^{2}
\end{aligned}
$$

and one can easily show that $v_{n} \geq \sigma^{2}$. Also, we have

$$
v_{n}-v_{n-1}=\sigma^{4} \theta^{2} \frac{v_{n-1}-v_{n-2}}{v_{n-1} v_{n-2}} \leq 0
$$

which follows that $\lim v_{n}$ exists and is σ^{2}, and that $\theta_{n 1} \rightarrow \theta$.
For problem (a), according to Example 5.2.1, we have

$$
\hat{X}_{n}=\sigma^{2} \theta\left(X_{n-1}-\hat{X}_{n-1}\right) / v_{n-2} .
$$

```
In [1]: import numpy as np
import matplotlib.pyplot as plt
from numpy import sin, cos, pi
from scipy.optimize import minimize
In [2]: def f(x)
    return ( (1-1.317*\operatorname{cos}(\textrm{x})+0.634*\operatorname{cos}(2*x))**2
= np.linspace(-pi, pi, 1000)
y=f(x)
plt.plot(x, y)
lt. plot(x,
```



```
In [3]: \(\mathrm{x}=\mathrm{np}\). linspace \((-1,1,1000)\)
\(y=f(x)\)
plt.plot(x, y)
plt. show()
```



```
In [4]: mininize(f, 0.5)
out [4]:
fun: 0.042337226938543
hess_inv: array([[0.70782066]])
jac: \(\operatorname{array}([4.22820449 e-07])\)
message: 'Optimization terminated successfully.' ffev: 15 nit: 4
ntu: 0
success: Tru
\(\mathrm{x}: \operatorname{array}([0.55751665])\)
```

Figure 1: HW9 Problem 1 (4.12) in Python

After easy calculation,

$$
\begin{aligned}
\left\|X_{n}-\hat{X}_{n}-Z_{n}\right\| & =\left\|\left(\theta-\frac{\sigma^{2} \theta}{v_{n-2}}\right) Z_{n-1}-\frac{\sigma^{2} \theta}{v_{n-2}}\left(X_{n-1}-\hat{X}_{n-1}-Z_{n-1}\right)\right\| \\
& \leq \theta\left(1-\frac{\sigma^{2}}{v_{n-2}}\right)\left\|Z_{n-1}\right\|+\frac{\sigma^{2} \theta}{v_{n-2}}\left\|X_{n-1}-\hat{X}_{n-1}-Z_{n-1}\right\|
\end{aligned}
$$

For any $\varepsilon>0$, there exists N such that for any $n>N$,

$$
\theta\left(1-\frac{\sigma^{2}}{v_{n-2}}\right)\left\|Z_{n-1}\right\|<\varepsilon
$$

Finally,

$$
\left\|X_{n+h}-\hat{X}_{n+h}-Z_{n+h}\right\| \leq \varepsilon \frac{1}{1-\theta}+\theta^{h}\left\|X_{n}-\hat{X}_{n}-Z_{n}\right\| \rightarrow 0 \quad(h \rightarrow \infty)
$$

HW8 Problem 1 (2.12) By the uniqueness of the projection. (See p. 53.)
HW8 Problem 3 (2.18) (a) Please refer to any textbook on functional analysis. (b) Stationarity guarantees that $\left\{X_{t}\right\}$ is a sequence in some Hilbert space $\left(L^{2}\right)$, then apply (a).

HW8 Problem 4 (4.3) Note that when $h \neq 0$,

$$
\frac{\sin a h}{h}=\frac{1}{2} \int_{-a}^{a} \mathrm{e}^{\mathrm{i} h v} \mathrm{~d} v
$$

HW5 Problem 1 (7.5) Use formula (7.2.5) to compute the asymptotic covariance matrix of $\hat{\rho}(1), \hat{\rho}(2)$ for an $\operatorname{AR}(1)$ process. What is the behaviour of the asymptotic correlation of $\hat{\rho}(1)$ and $\hat{\rho}(2)$ as $\phi \rightarrow \pm 1$?
Solution. First we have $\rho(h)=\phi^{|h|}$. When using (7.2.5) to calculate the asymptotic covariance, note that when $k=1$ and $i=2$ or $j=2, \rho(-1)=\phi$ rather than ϕ^{-1}. (Some students made mistakes here.)

For the 2nd question, note that covariance and correlation are different concepts. (Some students made mistakes here.)

For the answer,

$$
w_{1,1}=1-\phi^{2}, \quad, w_{2,2}=1+2 \phi^{2}-3 \phi^{4}, \quad w_{1,2}=w_{2,1}=2 \phi-2 \phi^{3} .
$$

And the asymptotic correlation is $2 \phi / \sqrt{1+3 \phi^{2}}$.

HW5 Problem 3 Suppose that $\left\{X_{t}\right\}$ is the $\operatorname{AR}(1)$ process,

$$
X_{t}-\mu=\phi\left(X_{t-1}-\mu\right)+Z_{t}, \quad\left\{Z_{t}\right\} \sim \operatorname{IID}\left(0, \sigma^{2}\right)
$$

where $|\phi|<1$. Find constants $a_{n}>0$ and b_{n} such that $\exp \left(\bar{X}_{n}\right)$ is $\operatorname{AN}\left(a_{n}, b_{n}\right)$.

Solution．By Theorem 7．1．2， \bar{X}_{n} is asymptotically normal，then using Proposi－ tion 6．4．1 to obtain a_{n} and b_{n} ．

This might seem strange at first sight，since when X is Gaussian，then $\exp (X)$ is nonnegative，which cannot be Gaussian．But the result above is true when it comes to asymptotic normality as the covariance converges to 0 ．

A Common Mistake in HW4 If $X_{n} \xrightarrow{\mathrm{~d}} X$ and $Y_{n} \xrightarrow{\mathrm{~d}} Y$ ，it is not necessary that $\left(X_{n}, Y_{n}\right) \xrightarrow{\mathrm{d}}(X, Y)$ ．See Proposition 6．3．1（Carmer－Wold Device）and Remark 1 on page 205 of the textbook for further details．

For example，HW4 Problem 4 （6．24）（b），noting that $X_{t}=\left(Z_{t} Z_{t+1}, \ldots, Z_{t} Z_{t+h}\right)^{\prime}$ is h－dependent，one can employ Carmer－Wold Device and Theorem 6．4．2（CLT for strictly stationary h－dependent sequences）to complete the proof．

HW4 Problem 1 （6．12）Suppose that X_{n} is $\operatorname{AN}\left(\mu, \sigma_{n}^{2}\right)$ where $\sigma_{n}^{2} \rightarrow 0$ ．Show that $X_{n} \xrightarrow{\mathbb{P}} \mu$ ．

Proof．I shall present slightly different proofs below．
Proof 1，by Zhenhang Bao．
首先不妨假设 $\frac{X_{n}-\mu}{\sigma_{n}}$ 依分布收玫到 Y ，且 Y 服从标准正态分布。下面用反证法来证明 X_{n} 依概率收玫到 μ 。
若不然，则存在一个 ϵ_{0} 和 μ_{0} 严格大于 0 ，以及一列 $X_{n_{k}}$（下面不妨仍记为 X_{n} ）使得

$$
\mathbb{P}\left(\left|X_{n}-\mu\right|>\epsilon_{0}\right)>\mu_{0}
$$

注意到 $\frac{X_{n}-\mu}{\sigma_{n}}$ 依分布收玫到 Y ，即有对任意的 $t>0$ ，成立

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left(\left|\frac{X_{n}-\mu}{\sigma_{n}}\right|<t\right)=\mathbb{P}(|Y|<t)
$$

下面取 t 足够大，使得 $\mathbb{P}(|Y|<t)>1-\frac{\mu_{0}}{2}$ ，而此时上面等式的左边，注意到 $\sigma_{n} \rightarrow 0$ ，结合我们的假设可知，存在一个 N ，任意的 $n>N$ ，有

$$
\mathbb{P}\left(\left|\frac{X_{n}-\mu}{\sigma_{n}}\right|<t\right) \leq 1-\mu_{0}
$$

而这与依分布收玫矛盾。于是假设不成立，即 X_{n} 依概率收玫到 $\mu_{\text {。 }}$
Proof 2，by Yinsheng Chai．

Proof. Since $Z_{n}:=\sigma_{n}^{-1}\left(X_{n}-\mu\right) \xrightarrow{d} Z$ where $Z \sim N(0,1)$, we may claim that $Z_{n}=O_{\mathbb{P}}(1)$ as $n \rightarrow \infty$. In fact, because a finite set of random variables (of course only one) is bounded in probability, $\forall \varepsilon>0, \exists \delta_{0}(\varepsilon)>0$, such that $\mathbb{P}\left(|Z|>\delta_{0}(\varepsilon)\right)<\varepsilon$. Besides,

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left(\left|Z_{n}\right|>\delta_{0}(\varepsilon)\right)=\mathbb{P}\left(|Z|>\delta_{0}(\varepsilon)\right)
$$

hence $\exists N>0$, such that $\forall n>N, \mathbb{P}\left(\left|Z_{n}\right|>\delta_{0}(\varepsilon)\right)<\varepsilon$. For $n \leq N,\left\{X_{1}, \cdots, X_{N}\right\}$ is finite and thus $\exists \delta_{1}(\varepsilon)>0$ such that $\mathbb{P}\left(|Z|>\delta_{1}(\varepsilon)\right)<\varepsilon$. Let $\delta(\varepsilon)=\max \left\{\delta_{0}(\varepsilon), \delta_{1}(\varepsilon)\right\}$ and we have

$$
\mathbb{P}\left(\left|Z_{n}\right|>\delta(\varepsilon)\right)<\varepsilon, \quad \forall n
$$

which means $Z_{n}=O_{\mathbb{P}}(1)$, i.e.

$$
\forall \varepsilon>0, \exists \delta(\varepsilon)>0, \mathbb{P}\left(\left|\sigma_{n}^{-1}\left(X_{n}-\mu\right)\right|>\delta(\varepsilon)\right)<\varepsilon
$$

which is equivalent to $\mathbb{P}\left(\left|X_{n}-\mu\right|>a_{n}(\varepsilon)\right)<\varepsilon$, where $a_{n}=\sigma_{n} \delta(\varepsilon) \downarrow 0$. Therefore, $X_{n}-\mu=o_{\mathbb{P}}(1)$, i.e. $X_{n} \xrightarrow{\mathbb{P}} \mu$.

Proof 3, similar with Proof 2.
Since $Z_{n}=\sigma_{n}^{-1}\left(X_{n}-\mu\right) \xrightarrow{\mathrm{d}} Z$ where $Z \sim \mathrm{~N}(0,1)$, we can know that $Z_{n}=$ $O_{p}(1) .{ }^{1}$ In fact, by Skorokhod's representation theorem, there exist random variables $\left\{Y_{n}\right\}$ and Y on a common probability space such that $Y \stackrel{\mathrm{~d}}{=} Z, Y_{n} \stackrel{\mathrm{~d}}{=} Z_{n}$ for any n, and such that $Y_{n} \rightarrow Y$ a.s.. Therefore $Y_{n}=Y+o_{p}(1)=O_{p}(1)+$ $o_{p}(1)=O_{p}(1)$ which implies $Z_{n}=O_{p}(1)$. Hence for any $\varepsilon>0$ and $M>0$, there exist $\delta>0$ and $N=N(\varepsilon, M, \delta)>0$ such that for any $n>N$, we have $\sigma_{n}<M / \delta$ and that

$$
\mathbb{P}\left(\left|X_{n}-\mu\right|>M\right) \leq \mathbb{P}\left(\left|X_{n}-\mu\right|>\delta \sigma_{n}\right)<\varepsilon
$$

which follows the result.
HW4 Problem 2 (6.14) If $X_{n}=\left(X_{n 1}, \ldots, X_{n m}\right)^{\prime} \xrightarrow{\mathrm{d}} \mathrm{N}(0, \Sigma)$ and $\Sigma_{n} \xrightarrow{\mathbb{P}} \Sigma$ where Σ is non-singular, show that $X_{n}^{\prime} \Sigma_{n}^{-1} X_{n} \xrightarrow{\mathrm{~d}} \chi^{2}(m)$.

A Common Mistake Most of the students take Σ_{n} as the covariance matrix of X_{n}, even though the exerice only suggests that $\Sigma_{n} \xrightarrow{\mathbb{P}} \Sigma$ which implies that Σ_{n} should be an arbitrary random matrix which is never guranteed to be symmetric or invertible. From another perspective, if Σ_{n} is the covariance matrix, then the condition should be written as $\Sigma_{n} \rightarrow \Sigma$ since they are not random.

In my opinion, the meaning of this exercise is that, when we have a consistent estimate Σ_{n} of the covariance Σ, we can know that $X_{n}^{\prime} \Sigma_{n}^{-1} X_{n} \xrightarrow{\text { d }} \chi^{2}(m)$ which might be used to construct confidence intervals.

The proof below is a little cumbersome and might be beyond the syllabus, so I think it's okay that you only work out the problem when Σ_{n} is the covariance matrix, and skip the proof for the general case.

[^0]Proof．If you assume Σ_{n} is the covariance matrix，then see the proof by Zhen－ hang Bao．

先不妨假设题目中涉及的所有的矩阵均非奇异，这是因为 $\Sigma_{n} \rightarrow \Sigma$ ，而 Σ 非异。于是由协方差矩阵的性质可知所有的矩阵都是正定阵，从而存在正定阵 $\left\{B_{n}\right\}$ 以及 B ，满足

$$
\Sigma_{n}=B_{n}^{2} \quad \Sigma=B^{2} \quad B_{n} \rightarrow B
$$

（以上矩阵的收敛均可理解为依概率收敛）而 X_{n} 依分布收敛到 $Y, ~ Y$ 服从均值为0的高斯分布。由依分布收敛的性质可知，$B_{n}^{-1} X_{n}^{T}$ 依分布收敛到 $B^{-1} Y^{T}$ 。从而，$X_{n}^{T} \Sigma_{n}^{-1} X_{n}$ 依分布收敛到 $Y^{T} \Sigma^{-1} Y$ 。最后再注意到 $Y^{T} \Sigma^{-1} Y$ 服从 $\chi^{2}(m)$ 的分布，即得证。

If Σ_{n} is not assumed to be the covariance matrix，the proof below is given by Yinsheng Chai．

Proof．Suppose $\boldsymbol{X}_{0} \sim N(0, \Sigma), \chi \sim \chi^{2}(m)$ and $\phi_{X}(t)$ is the characteristic function of X ． Then

$$
\left|\phi_{\boldsymbol{X}_{n}^{\top} \Sigma_{n}^{-1} \boldsymbol{X}_{n}}(t)-\phi_{\chi}(t)\right| \leq I_{1}+I_{2}+I_{3},
$$

where

$$
\begin{aligned}
I_{1} & =\left|\phi_{\boldsymbol{X}_{n}^{\top} \Sigma_{n}^{-1} \boldsymbol{X}_{n}}(t)-\phi_{\boldsymbol{X}_{0}^{\top} \Sigma_{n}^{-1} \boldsymbol{X}_{0}}(t)\right|, \\
I_{2} & =\left|\phi_{\boldsymbol{X}_{0}^{\top} \Sigma_{n}^{-1} \boldsymbol{X}_{0}}(t)-\phi_{\boldsymbol{X}_{0}^{\top} \Sigma^{-1} \boldsymbol{X}_{0}}(t)\right|, \\
I_{3} & =\left|\phi_{\boldsymbol{X}_{0}^{\top} \Sigma^{-1} \boldsymbol{X}_{0}}(t)-\phi_{\chi}(t)\right| .
\end{aligned}
$$

We claim that $I_{1}, I_{2}, I_{3} \rightarrow 0(n \rightarrow \infty)$ ．In fact，

$$
I_{1} \leq\left|\phi_{\boldsymbol{X}_{n}^{\top} \Sigma_{n}^{-1} \boldsymbol{X}_{n}}(t)-\phi_{\boldsymbol{X}_{n}^{\top} \Sigma_{n}^{-1} \boldsymbol{X}_{0}}(t)\right|+\left|\phi_{\boldsymbol{X}_{n}^{\top} \Sigma_{n}^{-1} \boldsymbol{X}_{0}}(t)-\phi_{\boldsymbol{X}_{0}^{\top} \Sigma_{n}^{-1} \boldsymbol{X}_{0}}(t)\right| \rightarrow 0
$$

from the Cramer－Wold device，$I_{2} \rightarrow 0$ because

$$
\left|\Sigma_{n}-\Sigma\right|=|\Sigma| \cdot\left|\Sigma_{n}\right| \cdot\left|\Sigma^{-1}-\Sigma_{n}^{-1}\right|
$$

and $\Sigma_{n}^{-1} \boldsymbol{X}_{0} \xrightarrow{\text { d }} \Sigma^{-1} \boldsymbol{X}_{0}, \boldsymbol{X}_{0}^{\top} \Sigma_{n}^{-1} \boldsymbol{X}_{0} \xrightarrow{\text { d }} \boldsymbol{X}_{0}^{\top} \Sigma^{-1} \boldsymbol{X}_{0} . I_{3} \rightarrow 0$ because

$$
\boldsymbol{X}_{0}^{\top} \Sigma^{-1} \boldsymbol{X}_{0}=\left(\Sigma^{-\frac{1}{2}} \boldsymbol{X}_{0}\right)^{\top}\left(\Sigma^{-\frac{1}{2}} \boldsymbol{X}_{0}\right)
$$

and $\Sigma^{-\frac{1}{2}} \boldsymbol{X}_{0} \sim N\left(\mathbf{0}, \boldsymbol{I}_{m}\right), \boldsymbol{X}_{0}^{\top} \Sigma^{-1} \boldsymbol{X}_{0} \sim \chi^{2}(m)$ ．Thus $\left|\phi_{\boldsymbol{X}_{n}^{\top} \Sigma_{n}^{-1} \boldsymbol{X}_{n}}(t)-\phi_{\chi}(t)\right| \rightarrow 0$ as $n \rightarrow \infty$ ， i．e． $\boldsymbol{X}_{n}^{\top} \Sigma_{n}^{-1} \boldsymbol{X}_{n} \xrightarrow{d} \chi^{2}(m)$ ．

Professor Yuwei Zhao provided the following proof．
Since $\operatorname{det}(\Sigma)$ is a continuous function of Σ ．If Σ is non－singular，there exists a large number $N>0$ such that $\left|\operatorname{det}\left(\Sigma_{n}\right)\right|>0$ ，which implies
that the inverse of Σ_{n} exists. Since Σ is a non-singular covariance matrix, there exists a matrix T such that $T^{\prime} T=\Sigma$ with $|\operatorname{det}(T)|>0$ and $T^{-1}=T$. Notice that $X_{n}^{\prime} \Sigma_{n}^{-1} X_{n} \in \mathbb{R}$ and we have the trace of $X_{n}^{\prime} \Sigma_{n}^{-1} X_{n}$ i.e. $\operatorname{tr}\left(X_{n}^{\prime} \Sigma_{n}^{-1} X_{n}\right)$, is exactly $X_{n}^{\prime} \Sigma_{n}^{-1} X_{n}$. We also have
$\operatorname{tr}\left(X_{n}^{\prime} \Sigma_{n}^{-1} X_{n}\right)=\operatorname{tr}\left(X_{n}^{\prime} T^{\prime} T \Sigma_{n}^{-1} T^{\prime} T X_{n}\right)=\operatorname{tr}\left(\left(T \Sigma_{n}^{-1} T^{\prime}\right)\left\{T X_{n} X_{n}^{\prime} T^{\prime}\right\}\right)$.
The first product $T \Sigma_{n}^{-1} T^{\prime}$ converge in probability to the identity matrix, and $T X_{n} X_{n}^{\prime} T^{\prime}$ converge in distribution to the m-dim vector of independent $\chi^{2}(1)$ distributed random variables.

Originally the proof I wrote is as follows. In general, when Σ_{n} is singular, we may temporarily take Σ_{n}^{-1} as the MoorePenrose inverse. Since Σ is nonsingular, given some matrix norm $\|\cdot\|$, there exists a constant $r>0$ such that for any Σ_{n} satisfying $\left\|\Sigma_{n}-\Sigma\right\| \leq r, \Sigma_{n}$ is non-singular. (The proof can be found, for example, in Section 5.2 of this note.) Write

$$
X_{n}^{\prime} \Sigma_{n}^{-1} X_{n}=X_{n}^{\prime} \Sigma_{n}^{-1} X_{n} 1_{\left\{\left\|\Sigma_{n}-\Sigma\right\| \leq r\right\}}+X_{n}^{\prime} \Sigma_{n}^{-1} X_{n} 1_{\left\{\left\|\Sigma_{n}-\Sigma\right\|>r\right\}}
$$

Noting that $\Sigma_{n} \xrightarrow{\mathbb{P}} \Sigma$ which implies the second term in RHS is $o_{p}(1)$, by Slutsky's theorem, it suffices to show

$$
X_{n}^{\prime} \Sigma_{n}^{-1} X_{n} 1_{\left\{\left\|\Sigma_{n}-\Sigma\right\| \leq r\right\}} \xrightarrow{\mathrm{d}} X^{\prime} \Sigma^{-1} X,
$$

where $X \sim \mathrm{~N}(0, \Sigma)$. In order to apply continuous mapping theorem, we need to show

$$
\left(\Sigma_{n}^{-1} 1_{\left\{\left\|\Sigma_{n}-\Sigma\right\| \leq r\right\}}, X_{n}\right) \xrightarrow{\mathrm{d}}\left(\Sigma^{-1}, X\right)
$$

In fact, by portmanteau lemma and the argument here, the result holds. (You may circumvent some difficulty by revising this proof and imitating Professor Zhao's argument.)

HW3 Problem 3 (6.6) Let $\left\{X_{t}\right\}$ be a stationary process with mean zero and an absolutely summable autocovariance function $\gamma(\cdot)$ such that $\sum_{h=-\infty}^{\infty} \gamma(h)=$ 0 . Show that $n \operatorname{Var}\left(\bar{X}_{n}\right) \rightarrow 0$ and hence that $n^{1 / 2} \bar{X}_{n} \xrightarrow{\mathbb{P}} 0$.

Proof. The autocovariance function is absolutely summable, so for any $\varepsilon>0$, there exists $K>0$ such that for any $H>K$, we have

$$
\sum_{|h|>H}|\gamma(h)|<\varepsilon .
$$

And since $\sum_{h} \gamma(h)=0$, there exists $M>0$ such that for any $n>M$,

$$
\left|\sum_{|h|<n} \gamma(h)\right|<\varepsilon
$$

Moreover, given H, there exists $N>0$ such that for any $n>N$,

$$
\frac{1}{n}\left|\sum_{|h| \leq H}\right| h|\gamma(h)|<\varepsilon
$$

Finally, noting that $\left\{X_{t}\right\}$ is stationary with zero mean, we have for $n>\max \{H+$ $1, N, M\}$,

$$
\begin{aligned}
\left|n \operatorname{Var}\left(\bar{X}_{n}\right)\right| & =\left|\sum_{h=-(n-1)}^{n-1}\left(1-\frac{|h|}{n}\right) \gamma(h)\right| \\
& \leq\left|\sum_{|h|<n} \gamma(h)\right|+\frac{1}{n}\left|\sum_{|h| \leq H}\right| h|\gamma(h)|+\sum_{|h|=H+1}^{n-1} \frac{|h|}{n}|\gamma(h)| \\
& <\varepsilon+\varepsilon+\sum_{|h|>H}|\gamma(h)|<3 \varepsilon .
\end{aligned}
$$

It follows that $n^{1 / 2} \bar{X}_{n} \rightarrow 0$ in L^{2} which implies convergence in probability.
See another proof using dominated convergence theorem in Theorem 7.1.1.

[^0]: ${ }^{1}$ For your information, this is called, in measure theory, Prokhorov's theorem.

