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This document contains solutions to selected problems in

Brockwell, P. J., Davis, R. A., and Fienberg, S. E. (1991). Time
series: theory and methods. Springer Science & Business Media.

Readers are encouraged to provide suggestions to improve the solutions and to
report any mistake or typo that may be found.

HW9 Problem 1 (4.12) It suffices to minimize |1−1.317e−iλ+0.634e−2iλ|2.
See Figure 1. Many mistakely took 0 as the answer. The corresponding period
should be 2π/λ (which is not important actually).

HW9 Problem 4 (5.3) Hanxiang Shen gave a simple answer. Let

γ(h) =

{
1, h = 0,

1/2, h ̸= 0.

Then it is straightforward to verify that γ is an even and positive definite func-
tion.

HW9 Problem 5 (5.5) Using the equations provided in Example 5.2.1 (p.
173), we have

v0 = (1 + θ2)σ2,

vn = (1 + θ2 − v−1
n−1θ

2σ2)σ2,

and one can easily show that vn ≥ σ2. Also, we have

vn − vn−1 = σ4θ2
vn−1 − vn−2

vn−1vn−2
≤ 0,

which follows that lim vn exists and is σ2, and that θn1 → θ.
For problem (a), according to Example 5.2.1, we have

X̂n = σ2θ(Xn−1 − X̂n−1)/vn−2.
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Figure 1: HW9 Problem 1 (4.12) in Python
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After easy calculation,

∥Xn − X̂n − Zn∥ =

∥∥∥∥(θ − σ2θ

vn−2

)
Zn−1 −

σ2θ

vn−2
(Xn−1 − X̂n−1 − Zn−1)

∥∥∥∥
≤ θ

(
1− σ2

vn−2

)
∥Zn−1∥+

σ2θ

vn−2

∥∥∥Xn−1 − X̂n−1 − Zn−1

∥∥∥ .
For any ε > 0, there exists N such that for any n > N ,

θ

(
1− σ2

vn−2

)
∥Zn−1∥ < ε.

Finally,

∥Xn+h − X̂n+h − Zn+h∥ ≤ ε
1

1− θ
+ θh

∥∥∥Xn − X̂n − Zn

∥∥∥ → 0 (h → ∞).

HW8 Problem 1 (2.12) By the uniqueness of the projection. (See p. 53.)

HW8 Problem 3 (2.18) (a) Please refer to any textbook on functional anal-
ysis. (b) Stationarity guarantees that {Xt} is a sequence in some Hilbert space
(L2), then apply (a).

HW8 Problem 4 (4.3) Note that when h ̸= 0,

sin ah

h
=

1

2

∫ a

−a

eihv dv.

HW5 Problem 1 (7.5) Use formula (7.2.5) to compute the asymptotic co-
variance matrix of ρ̂(1), ρ̂(2) for an AR(1) process. What is the behaviour of
the asymptotic correlation of ρ̂(1) and ρ̂(2) as ϕ → ±1?
Solution. First we have ρ(h) = ϕ|h|. When using (7.2.5) to calculate the asymp-
totic covariance, note that when k = 1 and i = 2 or j = 2, ρ(−1) = ϕ rather
than ϕ−1. (Some students made mistakes here.)

For the 2nd question, note that covariance and correlation are different con-
cepts. (Some students made mistakes here.)

For the answer,

w1,1 = 1− ϕ2, , w2,2 = 1 + 2ϕ2 − 3ϕ4, w1,2 = w2,1 = 2ϕ− 2ϕ3.

And the asymptotic correlation is 2ϕ/
√
1 + 3ϕ2.

HW5 Problem 3 Suppose that {Xt} is the AR(1) process,

Xt − µ = ϕ(Xt−1 − µ) + Zt, {Zt} ∼ IID(0, σ2),

where |ϕ| < 1. Find constants an > 0 and bn such that exp(X̄n) is AN(an, bn).
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Solution. By Theorem 7.1.2, X̄n is asymptotically normal, then using Proposi-
tion 6.4.1 to obtain an and bn.

This might seem strange at first sight, since when X is Gaussian, then
exp(X) is nonnegative, which cannot be Gaussian. But the result above is
true when it comes to asymptotic normality as the covariance converges to 0.

A Common Mistake in HW4 If Xn
d−→ X and Yn

d−→ Y , it is not necessary

that (Xn, Yn)
d−→ (X,Y ). See Proposition 6.3.1 (Carmer-Wold Device) and

Remark 1 on page 205 of the textbook for further details.
For example, HW4 Problem 4 (6.24) (b), noting thatXt = (ZtZt+1, . . . , ZtZt+h)

′

is h-dependent, one can employ Carmer-Wold Device and Theorem 6.4.2 (CLT
for strictly stationary h-dependent sequences) to complete the proof.

HW4 Problem 1 (6.12) Suppose that Xn is AN(µ, σ2
n) where σ

2
n → 0. Show

that Xn
P−→ µ.

Proof. I shall present slightly different proofs below.
Proof 1, by Zhenhang Bao.

Proof 2, by Yinsheng Chai.
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Proof 3, similar with Proof 2.

Since Zn = σ−1
n (Xn − µ)

d−→ Z where Z ∼ N(0, 1), we can know that Zn =
Op(1).

1 In fact, by Skorokhod’s representation theorem, there exist random

variables {Yn} and Y on a common probability space such that Y
d
= Z, Yn

d
= Zn

for any n, and such that Yn → Y a.s.. Therefore Yn = Y + op(1) = Op(1) +
op(1) = Op(1) which implies Zn = Op(1). Hence for any ε > 0 and M > 0,
there exist δ > 0 and N = N(ε,M, δ) > 0 such that for any n > N , we have
σn < M/δ and that

P(|Xn − µ| > M) ≤ P(|Xn − µ| > δσn) < ε,

which follows the result. □

HW4 Problem 2 (6.14) If Xn = (Xn1, . . . , Xnm)′
d−→ N(0,Σ) and Σn

P−→ Σ

where Σ is non-singular, show that X ′
nΣ

−1
n Xn

d−→ χ2(m).

A Common Mistake Most of the students take Σn as the covariance matrix

ofXn, even though the exerice only suggests that Σn
P−→ Σ which implies that Σn

should be an arbitrary random matrix which is never guranteed to be symmetric
or invertible. From another perspective, if Σn is the covariance matrix, then
the condition should be written as Σn → Σ since they are not random.

In my opinion, the meaning of this exercise is that, when we have a consistent

estimate Σn of the covariance Σ, we can know that X ′
nΣ

−1
n Xn

d−→ χ2(m) which
might be used to construct confidence intervals.

The proof below is a little cumbersome and might be beyond the syllabus, so
I think it’s okay that you only work out the problem when Σn is the covariance
matrix, and skip the proof for the general case.

1For your information, this is called, in measure theory, Prokhorov’s theorem.
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Proof. If you assume Σn is the covariance matrix, then see the proof by Zhen-
hang Bao.

If Σn is not assumed to be the covariance matrix, the proof below is given
by Yinsheng Chai.

Professor Yuwei Zhao provided the following proof.

Since det(Σ) is a continuous function of Σ. If Σ is non-singular, there
exists a large number N > 0 such that | det(Σn)| > 0, which implies
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that the inverse of Σn exists. Since Σ is a non-singular covariance
matrix, there exists a matrix T such that T ′T = Σ with | det(T )| > 0
and T−1 = T . Notice that X ′

nΣ
−1
n Xn ∈ R and we have the trace of

X ′
nΣ

−1
n Xn i.e. tr(X ′

nΣ
−1
n Xn), is exactly X ′

nΣ
−1
n Xn. We also have

tr(X ′
nΣ

−1
n Xn) = tr(X ′

nT
′TΣ−1

n T ′TXn) = tr
((

TΣ−1
n T ′){TXnX

′
nT

′}) .

The first product TΣ−1
n T ′ converge in probability to the identity

matrix, and TXnX
′
nT

′ converge in distribution to the m-dim vector
of independent χ2(1) distributed random variables.

Originally the proof I wrote is as follows. In general, when Σn is singular,
we may temporarily take Σ−1

n as the MoorePenrose inverse. Since Σ is non-
singular, given some matrix norm ∥ · ∥, there exists a constant r > 0 such that
for any Σn satisfying ∥Σn − Σ∥ ≤ r, Σn is non-singular. (The proof can be
found, for example, in Section 5.2 of this note.) Write

X ′
nΣ

−1
n Xn = X ′

nΣ
−1
n Xn1{∥Σn−Σ∥≤r} +X ′

nΣ
−1
n Xn1{∥Σn−Σ∥>r}.

Noting that Σn
P−→ Σ which implies the second term in RHS is op(1), by Slutsky’s

theorem, it suffices to show

X ′
nΣ

−1
n Xn1{∥Σn−Σ∥≤r}

d−→ X ′Σ−1X,

where X ∼ N(0,Σ). In order to apply continuous mapping theorem, we need to
show

(Σ−1
n 1{∥Σn−Σ∥≤r}, Xn)

d−→ (Σ−1, X).

In fact, by portmanteau lemma and the argument here, the result holds. (You
may circumvent some difficulty by revising this proof and imitating Professor
Zhao’s argument.) □

HW3 Problem 3 (6.6) Let {Xt} be a stationary process with mean zero and
an absolutely summable autocovariance function γ(·) such that

∑∞
h=−∞ γ(h) =

0. Show that nVar(X̄n) → 0 and hence that n1/2X̄n
P−→ 0.

Proof. The autocovariance function is absolutely summable, so for any ε > 0,
there exists K > 0 such that for any H > K, we have∑

|h|>H

|γ(h)| < ε.

And since
∑

h γ(h) = 0, there exists M > 0 such that for any n > M ,∣∣∣∣∣∣
∑
|h|<n

γ(h)

∣∣∣∣∣∣ < ε.
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Moreover, given H, there exists N > 0 such that for any n > N ,

1

n

∣∣∣∣∣∣
∑

|h|≤H

|h|γ(h)

∣∣∣∣∣∣ < ε.

Finally, noting that {Xt} is stationary with zero mean, we have for n > max{H+
1, N,M},

|nVar(X̄n)| =

∣∣∣∣∣∣
n−1∑

h=−(n−1)

(
1− |h|

n

)
γ(h)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∑
|h|<n

γ(h)

∣∣∣∣∣∣+ 1

n

∣∣∣∣∣∣
∑

|h|≤H

|h|γ(h)

∣∣∣∣∣∣+
n−1∑

|h|=H+1

|h|
n
|γ(h)|

< ε+ ε+
∑

|h|>H

|γ(h)| < 3ε.

It follows that n1/2X̄n → 0 in L2 which implies convergence in probability. □

See another proof using dominated convergence theorem in Theorem 7.1.1.
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