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This document contains solutions to selected problems in

Brockwell, P. J., Davis, R. A., and Fienberg, S. E. (1991). Time
series: theory and methods. Springer Science & Business Media.

Readers are encouraged to provide suggestions to improve the solutions and to
report any mistake or typo that may be found.

HW9 Problem 1 (4.12) It suffices to minimize [1—1.317e7** +0.634e~2*|2.
See Figure 1. Many mistakely took 0 as the answer. The corresponding period
should be 27t/\ (which is not important actually).

HW9 Problem 4 (5.3) Hanxiang Shen gave a simple answer. Let

1, h=0,
(h) = {1/2, h#0.

Then it is straightforward to verify that v is an even and positive definite func-
tion.

HW9 Problem 5 (5.5) Using the equations provided in Example 5.2.1 (p.
173), we have

Vg = (1 + 92)0'2,

vp = (1+ 6% — v, 1,0%0%)0?,
and one can easily show that v,, > o2. Also, we have

Up_1 — Up_
vy — vy g = 02T T =2
Up—1Un—2
which follows that lim v,, exists and is o2, and that 6,,; — 6.
For problem (a), according to Example 5.2.1, we have

X, = 020(Xn—1 - Xn—l)/'Un—Q-
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import numpy as np
import matplotlib. pyplot as plt

from numpy import sin, cos, pi
from scipy.optimize import minimize

def f(x):
return { (1 - 1. 31T%cos(x) + 0.634*cos (24x) ) *+2
+ (1. 31 T¥sintx) — 0.634%sin(24x)) 42 )

x = np. linspace{-pi, pi, 1000)
v = £ix)

plt.plotix, ¥

plt. show()

x = np. linspace (-1, 1, 1000)
¥ = £(x)

plt.plotix, ¥

plt.show ()
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Tn [4]:

minimize(f, 0.5)

outl4]:

fun

hess_inv:
jac:
message:
nfew:
nit:
njev:
status:
success:
x:

Figure

: 0.042337226938543

array ([ [0. T078208611)

array{ [4. 228204492-07])

‘Optimization terminated successfully.’
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0

True

array ([0, 55751665])

1: HW9 Problem 1 (4.12) in Python



After easy calculation,

- 20 020 N
||X'IL - Xn - Zn” = H (9 - > Zn—l - (Xn—l - Xn—l - Zn—l)
Up—2 Un—2

o? 020 N
<0 <1 - ) 1 Zaall + = [ X1 = Ruct = Zoca |
Un—2 Un—2

For any € > 0, there exists IV such that for any n > N,

2
0 (1 S ) 1 Zn_1l < .
v

n—2
Finally,

| Xnth — Xngn — Zngnll < €

+o HXn _X, -2

1
T3 —0 (h— o0).

HWS8 Problem 1 (2.12) By the uniqueness of the projection. (See p. 53.)

HWS8 Problem 3 (2.18) (a) Please refer to any textbook on functional anal-
ysis. (b) Stationarity guarantees that {X;} is a sequence in some Hilbert space

(L?), then apply (a).
HWS8 Problem 4 (4.3) Note that when h # 0,

sinah }/a ok .

h 2 /) 4
HWS5 Problem 1 (7.5) Use formula (7.2.5) to compute the asymptotic co-
variance matrix of p(1), 5(2) for an AR(1) process. What is the behaviour of
the asymptotic correlation of p(1) and p(2) as ¢ — £17
Solution. First we have p(h) = ¢/". When using (7.2.5) to calculate the asymp-
totic covariance, note that when k =1 and i = 2 or j = 2, p(—1) = ¢ rather
than ¢~ !. (Some students made mistakes here.)

For the 2nd question, note that covariance and correlation are different con-
cepts. (Some students made mistakes here.)

For the answer,

win=1-¢> Lwio=1+2¢>—3¢" wiy=ws1=2¢— 20"
And the asymptotic correlation is 2¢/+/1 + 3¢2.

HWS5 Problem 3 Suppose that {X;} is the AR(1) process,
X — n= ¢(Xt—1 - H’) + Zta {Zt} ~ IID(0702)7

where |¢| < 1. Find constants a,, > 0 and b, such that exp(X,,) is AN(ay, by).



Solution. By Theorem 7.1.2, X,, is asymptotically normal, then using Proposi-
tion 6.4.1 to obtain a,, and b,,.

This might seem strange at first sight, since when X is Gaussian, then
exp(X) is nonnegative, which cannot be Gaussian. But the result above is
true when it comes to asymptotic normality as the covariance converges to 0.

A Common Mistake in HW4 If X,, 4 X and Y, 4 Y, it is not necessary

that (X,,Y,) 4 (X,Y). See Proposition 6.3.1 (Carmer-Wold Device) and

Remark 1 on page 205 of the textbook for further details.

For example, HW4 Problem 4 (6.24) (b), noting that X; = (Z:Zi11,...,Z1Z11p)
is h-dependent, one can employ Carmer-Wold Device and Theorem 6.4.2 (CLT
for strictly stationary h-dependent sequences) to complete the proof.

HW4 Problem 1 (6.12) Suppose that X,, is AN(u,02) where 62 — 0. Show
that X,, — /1.

Proof. 1 shall present slightly different proofs below.
Proof 1, by Zhenhang Bao.
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Proof 2, by Yinsheng Chai.



Proof. Since Z,, = 0,1 (X,, — p) 2 Z where Z ~ N(0,1), we may claim that Z,, = Op(1)
as n — oo. In fact, because a finite set of random variables (of course only one) is
bounded in probability, ¥e > 0,3d0(2) > 0, such that P(|Z| > dy(g)) < . Besides,

Tim P Z,] > 6o(c)) = B(|Z] > 6o(e)),

hence 3N > 0, such that Vn > N,P(|Z,| > dy(¢)) < . For n < N, {X1,--- . Xy} is
finite and thus 34d;() > 0 such that P(|Z]| > d;(g)) < . Let §(2) = max{dg(c),d1(=)}
and we have

P(|Z,] > 0(2)) <&, ¥n,

which means Z,, = Op(1), i.e.
Ve >0,36(c) >0, P(lo, (Xn — p)| >6(2)) <&,

which is equivalent to P(|X, — pu| > an(e)) < e, where a, = 0,0(¢) | 0. Therefore,
X, —p=op(1), ie. X, &N IL. O

Proof 3, similar with Proof 2.
Since Z, = 0,1 (X,, — p) 4 7 where Z ~ N(0,1), we can know that Z, =
O,(1).! In fact, by Skorokhod’s representation theorem, there exist random

variables {Y,,} and Y on a common probability space such that ¥’ 4z , Y, 4 Zn
for any n, and such that ¥;, — Y a.s.. Therefore ¥, =Y 4+ 0,(1) = O,(1) +
op(1) = O,(1) which implies Z,, = Op(1). Hence for any ¢ > 0 and M > 0,
there exist 6 > 0 and N = N(g, M,d) > 0 such that for any n > N, we have
on < M/§ and that

P(| Xy — puf > M) <P(| Xy, — p| > don) <e,
which follows the result. O

HW4 Problem 2 (6.14) If X, = (Xu1,..., Xum) = N(0,%) and 3, = %
where Y is non-singular, show that X/ ¥ 1X,, 4 2 (m).

A Common Mistake Most of the students take Y, as the covariance matrix

of X,,, even though the exerice only suggests that X, L 5 which implies that >,
should be an arbitrary random matrix which is never guranteed to be symmetric
or invertible. From another perspective, if ¥, is the covariance matrix, then
the condition should be written as ¥,, — ¥ since they are not random.

In my opinion, the meaning of this exercise is that, when we have a consistent

estimate ¥, of the covariance X, we can know that X/ ¥ 1X, 4 x%(m) which
might be used to construct confidence intervals.

The proof below is a little cumbersome and might be beyond the syllabus, so
I think it’s okay that you only work out the problem when 3, is the covariance
matrix, and skip the proof for the general case.

LFor your information, this is called, in measure theory, Prokhorov’s theorem.



Proof. If you assume ¥,, is the covariance matrix, then see the proof by Zhen-
hang Bao.
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If ¥, is not assumed to be the covariance matrix, the proof below is given
by Yinsheng Chai.

Proof. Suppose X ~ N(0,X), x ~ x*(m) and ¢y(t) is the characteristic function of X.
Then
|¢xlx;'x,.{t] - <L+ 1+ I,

where

L= |¢x§:;’x“(t} - ‘?x,}x;'xu{f)l-
I, = |¢x;r:"x..{t] - ¢x}x-1xu(f)|~
I}’I- = I?‘XJE-IXII{tJ - (ﬁx(t)l'

We claim that Iy, [s, I3 = 0(n — oc). In fact,
L < |¢'x“T1::1x,L{f) - ¢x“T:_:n"x..(tJ| + |¢x,?}.:,."x..(t) - ‘.t'x,]'x:‘xu“” =0
from the Cramer-Wold device, I, — [} because
120 = Z[=[Z] - |Z0] - [Z7 = 7
and E71Xp 5 U1 X0, XTE1 X, 5 XTE1X,. Iy — 0 because
XJE7 X, = (T75X,) (275 X)

and 571 X, ~ N(0,I,), X =71 X, ~ x*(m). Thus |¢x,‘{z:'xn{t]_¢'x(f)| — Dasn — oo,
ie. XTu-1x, L\ X2 (m). O

Professor Yuwei Zhao provided the following proof.

Since det(X) is a continuous function of ¥.. If ¥ is non-singular, there
exists a large number N > 0 such that |det(X,,)| > 0, which implies



that the inverse of ¥, exists. Since X is a non-singular covariance
matrix, there exists a matrix 7" such that 7T = 3 with | det(T")| > 0
and T~ = T. Notice that X/ 31X, € R and we have the trace of
X!/ SAX, de tr(X)2,1X,), is exactly X/ 3,1 X,,. We also have

tr(X/N71X,) = (X, T'TS T'TX,) = tr((TZ;lT’){TXnXT’LT’}) .

The first product T YT converge in probability to the identity
matrix, and TX, X, T" converge in distribution to the m-dim vector
of independent x?(1) distributed random variables.

Originally the proof I wrote is as follows. In general, when 3, is singular,
we may temporarily take X! as the MoorePenrose inverse. Since ¥ is non-
singular, given some matrix norm || - ||, there exists a constant r > 0 such that
for any X, satisfying |2, — X|| < r, 3, is non-singular. (The proof can be
found, for example, in Section 5.2 of this note.) Write

X2 X, = XS X s —sp<r + Xa S0 Xal (s, s>y

Noting that X, L S which implies the second term in RHS is 0,(1), by Slutsky’s
theorem, it suffices to show

_ d _
XS X s, —sy<ry — X'S7X,

where X ~ N(0,3). In order to apply continuous mapping theorem, we need to
show 4
(B2 gz, —s<ry Xn) = (X371 X).

In fact, by portmanteau lemma and the argument here, the result holds. (You
may circumvent some difficulty by revising this proof and imitating Professor
Zhao’s argument.) O

HW3 Problem 3 (6.6) Let {X;} be a stationary process with mean zero and
an absolutely summable autocovariance function v(-) such that Y 7> ~(h) =

0. Show that n Var(X,) — 0 and hence that n*/2X,, = 0.

Proof. The autocovariance function is absolutely summable, so for any € > 0,
there exists K > 0 such that for any H > K, we have

Y bl <e.

|h|>H

And since ), v(h) = 0, there exists M > 0 such that for any n > M,


https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-241j-dynamic-systems-and-control-spring-2011/readings/MIT6_241JS11_chap05.pdf
https://math.stackexchange.com/questions/3551353/multivariate-application-of-slutskys-lemma

Moreover, given H, there exists N > 0 such that for any n > N,

SIS bl <<

|h|<H

Finally, noting that { X, } is stationary with zero mean, we have for n > max{H+
17 N, M},

In Var(X,,)| = § (1—@) (h)

h=—(n—1)
1 n—1 ‘h|
< S am|+=| S )|+ Y )
|hl<n |h|[<H |h|=H+1
<ete+ Y hy(h)<3e
|h|>H

It follows that n'/2X,, — 0 in L? which implies convergence in probability. [

See another proof using dominated convergence theorem in Theorem 7.1.1.



